Our seminars

The GLEM school

Other seminars

Articles
Webmaster - Infos
Preferences

Connect again
---

Your name (or pseudo) :

Your secret code (associated with your pseudo)


 Count of members 175 members


Connected :

(nobody)
Newsletter
To receive news about this website, consider subscribing to our Newsletter.
Subscribe
Unsubscribe
300 Subscribers
How to contact us

G.L.E.M.
Lyon Medical Studies Group

Non profit organization.
Address:
49, Rue Mercière
69002 LYON
Phone : +33 472 41 80 08
Fax:  +33 478 37 55 13

Web site : glem.org

Secretary :
Diana
contact@glem.org

Webmaster :
(Michel MARIGNAN)
marignan@glem.org

Legal information

Site on OVH

Visits

   visitors

   visitors online

Multimedia - Audio and video magazine n°2
Sorry, french only in the bigenning, but video and text of video are in English.

ESPACE MULTIMEDIA
Magazine multimedia numéro 2


LE DOCUMENT SONORE.

Conférence d'introduction à un séminaire d'auriculothérapie le 27 Mars 1988 par le Docteur Paul Nogier.

Nogier_multimedia.jpgPour ce deuxième volet multimedia, nous vous permettons d’écouter la conférence d'introduction faite par le Docteur Paul Nogier lors de l'ouverture d'un séminaire de formation, à Monaco, dans le cadre des "Entretiens Internationaux de Monaco", le 27 mars 1988. Ce document sonore est issu d'un enregistrement amateur sur cassette, il souffre donc de quelques imperfections sonores malgré un filtrage informatique. Le docteur Paul Nogier, fondateur de l'auriculothérapie et de l'auriculomédecine, y expose sa vision de l'époque à propos du VAS (appelé depuis le symposium de 2012 le "signe de Nogier") et relate ce que signifie, pour lui, le fait qu'un éclairement de la peau à l'aide d'une source de lumière froide provoque non seulement une réponse de l'organisme à l'origine du signe de Nogier, mais également des changements dans la biosynthèse des cathécolamines (expériences en double aveugle chez le lapin).

Les hypothèses évoquées brièvement par Paul Nogier sur les mécanismes neurologiques de cette réponse sont toujours, encore aujourd'hui, des hypothèses.

Pour écouter cette conférence, c’est ci-dessous (appuyer sur le bouton lecture, sans oublier de connecter votre haut-parleur ):

Durée : 8' 10"


 

________________________________________________

 

LE DOCUMENT VIDEOGRAPHIQUE.

Communication scientifique au cours Vème Symposium International d'auriculothérapie de 2006.

Ackermann.jpgPour ce deuxième document video, en anglais, nous vous proposons l’intégralité de la communication du Docteur John Ackerman, psychiatre et chercheur à Santa-Barbara (USA), qui a travaillé pendant de nombreuses années auprès de ses malades avec l'auriculomédecine. Il nous présente ici ses derniers travaux effectués à l'institut des bio-photons, en Allemagne, concernant les réponses émissives de la peau humaine quand elle est soumise à l'influence de substances colorées, telles que les gélatines utilisées comme filtres dans l'industrie photographique pour équilibrer les tirages sur papier couleur et qui ont pour effet de modifier la répartition des fréquences lumineuses les traversant .

Ce travail met en évidence une réponse spécifique de la peau, prouvant ainsi qu'elle y est sensible.

La qualité video est faible mais elle permet de suivre efficacement cette présentation de 14 minutes environ, en anglais.

Une version téléchargeable en qualité DVD est disponible pour les membres du GLEM.
Pour voir cette communication scientifique, c’est ci-dessous (appuyer sur le bouton lecture).


Durée : 14' 42"



Voici le résumé de cette présentation.

Vous pouvez également visualiser la présentation en cliquant ici.jpg

HUMAN BIOPHOTON EMISSION AND THE VAS

Roeland Van Wijk1,2 , John M. Ackerman3, Eduard P. A. Van Wijk1,

1.      International Institute of Biophysics, D-41472 Neuss, Germany   2.      Utrecht University, Utrecht, The Netherlands  3.      Cottage Hospital, Santa Barbara, California, USA



INTRODUCTION

Research on bio-informational aspects of biophotons in the IR to UV range can be traced back to Alexander G. Gurwitsch more than seventy years ago. He emphasized that a very weak photon field originating from within cells triggered fundamental biological functions, such as cell division1,2. Biophoton emission is not limited to small organisms; it can also be detected from human subjects. The wavelength spectrum of this emission corresponds to oxygen radical and lipid peroxidation processes documented from animal tissues3-5.

A search for evidence of the informational character of the human ultra-weak photon field was stimulated by Paul Nogier’s discovery that the radial arterial wall quickly changes its tone if an object such as a transparent gelatin color filter either touches the body or is in close proximity to, but not touching a patient’s body. Nogier ultimately called this connection the Vascular Autonomic Signal (VAS)6.

A recent study documented that a dark-adapted subject responds to the presence of individual dark-adapted Kodak Wratten transparent gelatin color filters (25 or 58 or 44A) placed at a constant distance from a subject’s hand in the total absence of light. The consistent result was a temporary shift of hand photon emission7 spectrum characteristic of the filter used. The study was executed by exposing the dorsum of the hand for 200 s to a filter placed at a distance of approximately 3 cm. Photon emission spectra was also recorded from the dorsum position of the hand before the use of a filter (baseline) and after exposure to that same filter.

The present study extends the former exploration by asking if a dark-adapted Kodak Wratten transparent gelatin red filter #25 can have an effect on systemic photon emission. Stated differently, could the spontaneous emission at one anatomic location change when the red filter is exposed at a distance of 3 cm from a different anatomic location?

METHODS

Human photon emission data were collected in a specially designed darkroom4,5. The photomultiplier (EMI 9235 QB, selected type) was hung in the dark room in a manner designed for manipulation in three directions. The photomultiplier has a window of 52 mm diameter and a spectral sensitivity range of 200-650 nm. The photomultplier was maintained at a temperature of  –25oC to reduce the dark current. The dark current was measured before and after each experiment. During the experimental period, the average dark current (s.e.m.) was 5.1 ± 0.3 cps.

 

A fixed protocol was followed: before measurement, the subject was shielded from ambient light for at least one hour. 4,5  The shielding was an effort to avoid delayed luminescence interference from previous exposure to daylight or artificial light prior to recording5. After dark-adaptation, the subject was positioned on the bed for at least 10 min. The photomultiplier tube was placed above a chosen anatomic location. Each recording of 200s included 4,000 measurements at 50ms each.

Statistical analysis of photon count data was performed with Statistica 6.1 (StatSoft, OK, version 2004) using T-tests for dependent (correlated) samples and Wilcoxon matched pairs tests.

RESULTS

When studying the systemic effect of photon emission two situations were explored: a.) exposure of the left palm to the red filter at a distance of 3 cm while simultaneously recording from the dorsum of the same left hand, and b.) exposure of the left palm to the red filter at a distance of 3 cm while simultaneously recording from the forehead. To expose the palm of the left hand to the red filter, the hand rested on a cardboard frame under which the color filter was placed at a distance of 3 cm.

When studying the systemic effect of photon emission of the dorsum of the hand or forehead, the location’s baseline emission was first recorded for 200 s without filter #25 in place below the left palm. Then, filter #25 was placed 3 cm under the left palm while that hand remained in the same position on the cardboard frame. The filter was present for 200 s while the dorsum or forehead photon emission was recorded. Then, the filter was removed from under the frame and photon emission of the other anatomic location was again recorded for 200 s.

Table 1 demonstrates the increase in photon emission of the dorsum of the left hand and forehead during exposure of the left palm to filter #25. Data demonstrate that exposure to the filter evoked increased emission at the other location.
 

Photon emission time series from the dorsum of the hand prior to color filter exposure compared to dorsum emission during filter exposure suggests that increased emission from the dorsum of the hand was evident as soon as the recordings began after positioning of the filter below the left palm. After exposure, emission from the dorsum of the left hand slowly decreased (Figure 1, left panels). The same kinetics were observed when photon emission time series of the forehead was recorded before, during and after the palm was exposed to the red filter (Figure 1, right panels).

Table 1: Effect of Kodak Wratten filter#25 on spontaneous emission from dorsum of hand and forehead before , during and after exposure of the palm to Kodak Wratten red filter #25. Data of three independent experiments are presented.

 

 

Dorsum of hand (mean±sem)

Forehead

(mean±sem)

 

Before Exposure

15.8±0.4

20.4±0.4

 

During Exposure

21.5±0.4

23.9±0.4

 

After Exposure

20.6±0.4

22.5±0.4

 

Figure 1. Photon emission from the dorsum of the left hand (left column) and the forehead (right column) after exposure of palm of left hand to Kodak Wratten filter #25.

Time series of photon counts of the dorsum of hand and forehead before (respectively panel A and B), during (respectively panel C and D) and after (respectively panel E and F) exposure of the palm to Kodak Wratten red filter. Time series before and during exposure to red filter had a duration of 200 s; the duration of recording after exposure to filter was 400 s.

 Tableau_ack_2.jpg

DISCUSSION

This study illustrated as did a previous study7 that a dark-adapted subject responded in the total absence of light with a temporary increase of photon emission from the dorsum of the left hand while the palm was simultaneously exposed to a dark-adapted color filter placed at 3 cm from the skin. A major new finding resulting from the present study was data indicating that exposure to the same filter at a distance of 3 cm from the left palm also resulted in a rapid systemic response of the body’s ultra-weak photon emission from the forehead.

In Auriculomedicine, the use of color filters held in the human “field” has been clinically known to be associated with a systemic effect.7,8 Nogier reported that, clinically, such effects were detectable in complete darkness6. Bourdiol, et. al, Ikezono, Marignan and Vulliez documented that not only subtle kinesthetic stimuli but even light creates a transient cardiovascular change documented by pattern recognition (artificial intelligence) 10 or by the rate of the cardiac pulse. 11 The same has also been recorded over the radial artery both by manual pulse9 as well as infrared coupled with Doppler12,13,14. The mechanism of interaction between a color filter and a human body and the mechanism of systemic body emission response are currently speculation. However, what can be concluded is that the human body contains supplementary sensory systems in addition to hearing, taste, smell, touch and vision that gather information from the environment. Challenging a patient at a distance from the ear with any type of object seems to take advantage of such supplementary systems. This is pertinent to the clinician using the VAS in a discriminating diagnostic fashion while evaluating with a transparent gelatin filter held in the field at a distance from the patient’s ear. This study begins to document with biophoton emission spectra (instead of arterial tonal wall changes) that the body is aware, in a very discriminating manner, what is “in the field” without the use of sight, sound, taste, smell or touch. Future studies correlating photon emission spectrum with arterial tonal wall changes will be important.

ACKNOWLDGEMENT

This work was supported by the Samueli Institute of Information Biology and the Rockefeller-Samueli Center for Research in Mind-body Energy.

REFERENCES

1. Gurwitsch A. Uber Ursachen der Zellteilung. W Roux’ Arch 1922;51.
2. Van Wijk R. Bio-photons and bio-communication. J. Sci Explor 2001;15:183-197.
3. D, Wierzuchowska D, Kochel B, Gu Q, Popp FA, Lilius EM, Marnila P, Van Wijk R, Van Aken JM. Biophoton emission, stress and disease. Experientia 1992;48:1029-1102.
4. Van Wijk R, Van Wijk EPA. Human biophoton emission. Recent Res Devel Photochem Photobiol 2004;7:139-173.
5. Van Wijk EPA, Van Wijk R. Multi-site recording and special analysis of human body spontaneous photon emission. Forsch Komplementarmed Klss Naturheilkd 2005;12:96-112.
6. Nogier PMF. From Auriculotherapy to Auriculomedicine. Saint-Ruffine, France: Maisonneuve 1983:134.
7. Van Wijk R, Ackerman JM, Van Wijk EPA. Color filters and human photon emission: Implications for Auriculomedicine. Explore 2005a;1:102-108.
8. Bourdiol RH. Auriculosomatology. Saint-Ruffine, France: Maisonneuve, 1983:51-53.
9. Marignan, M. , Vulliez, C. Mis en évidence du signal vasculaire. Proceedings of the International Symposium of Auriculotherapy and Auriculomedicine; Lyon, France, May 27-29, 1994, pp. 65-66.
10. Marignan, M.,  Vulliez, C. Le VAS enfin élucidé ? Nouvelle méthodologie mathématique de traitement avancé du signal. Proceedings of the International Symposium of Auriculotherapy and Auriculomedicine; Lyon, France, May 26-28, 2000, pp. 187-194.
11. Ikezono, E. Objective Digital Analysis of Pulse Diagnosis Using Tonometry. Proceedings of the International Symposium of Auriculotherapy and Auriculomedicine, Lyon, France, May 26-28, 2000, pp 153-155.
12. Navach, JH. Measuring the Physiological Functions Comprising the Vascular Autonomic System. VII German-Latino Congress on Auricular Medicine; Lyon, France, 1981, j439m@silcom.com.
13. Navach, JH. The Vascular Autonomic System, Physics and Physiology. VII German-Latino Congress on Auricular Medicine; Lyon, France, 1981, j439m@silcom.com.
14. Navach, JH. The Vascular Autonomic System Lecture Series at the University of Wisconsin, 1981, j439m@silcom.com.


 

 


Creation date : 19/12/2012 @ 22:49
Last update : 17/11/2014 @ 23:31
Category : Multimedia
Page read 4539 times


Print the article Print the article

 
Reactions to this article

Nobody gave a comment yet.
Be the first one to do it!

 
^ Top ^